The Relationship between Organizational Learning Culture and Core Job Characteristics for Knowledge Workers in Korea

Baek-Kyoo (Brian) Joo
Gary N. McLean
Baiyin Yang
University of Minnesota

This paper reports on the relationship between learning organization culture and core job characteristics. The dimensions of the learning organization questionnaire (DLOQ) and the job diagnostic survey (JDS) were used as measures. Validity and reliability were determined through confirmatory factor analysis (CFA) and Cronbach’s coefficient (α). Explaining 30% of variance in the Motivating Potential Score (MPS) that represents core job characteristics, the hierarchical regression analysis found that employees in higher hierarchical position were significantly higher in the MPS, and that, among the seven dimensions of the DLOQ, dialogue and inquiry and embedded system found to be significant predictors of the MPS.

Keywords: Organizational Learning, Job Characteristics, Korea

Today’s business environment is characterized by turbulent change and fierce competition due to technological advancement and the knowledge-based economy that make jobs more complex and mobile. To survive and thrive in such a world, an organization must always be ready to adapt. This is a time of change not only in strategy, technology, and product mix, but also in culture. Thus, many organizations strive to have an organizational learning culture of creating, acquiring, and transferring knowledge, and modifying its behavior to reflect new knowledge and insights (Garvin, 1993).

There seems to be broad agreement among economists and business forecasters that the growth of the overall economy will come in the creative or knowledge-based occupations and in the service sector. Drucker (1988, 1992) long ago pointed to the growth of the knowledge economy and the importance of knowledge workers and foresaw that future organizations would be flatter, information based, and organized around teams in response to competitive challenges. Knowledge workers are defined as high-level employees who apply theoretical and analytical knowledge that is acquired through formal education in developing new products or services (Drucker, 1992). His argument has become reality after two decades. Jobs for knowledge workers have become more complex and challenging over time.

Problem Statement and Research Questions

Organizational learning culture and job characteristics are important constructs in human resource development (HRD) in general and organization development (OD) in specific. They are two of the most frequently used contextual variables for satisfaction, performance, change, and innovation and creativity not only for individuals, but also for groups and organizations (Hackman & Oldham, 1975, 1980; Marsick & Watkins, 2003). While there are many studies about job characteristics, there is not much research on the relationship between organizational learning culture and core job characteristics.

The purpose of this research is to investigate the relationship between organizational learning culture and core job characteristics for knowledge workers in the Korean cultural setting, controlling for hierarchical position and type of job. The research questions are:

- What are the relationships between the seven dimensions of the DLOQ (i.e., continuous learning, dialogue and inquiry, team learning, embedded system, empowerment, system connection, and strategic leadership) and the sub-constructs of core job characteristics?
- How are the control variables (i.e., education level, job level, and job type) and the subscales of organizational learning culture associated with the subscales of core job characteristics and the MPS?

Theoretical Framework

This section presents the theoretical framework for the two primary constructs of this study: learning
organizational culture and core job characteristics.

Organizational Learning Culture

Organizational learning culture is defined as an environment in which organizational learning is structured so that teamwork, collaboration, creativity, and knowledge processes have a collective meaning and value (Confessore & Kops, 1998), and that enables organizations to be responsive and adaptive to the constant inflows of information and resource characteristics of open systems (Senge, 1990). According to Garvin (1993), a learning organization refers to “an organization skilled at creating, acquiring, and transferring knowledge, and at modifying its behavior to reflect new knowledge and insights” (p. 80).

The general systems model that views organizations as “capable of operating either in open or closed systems supports these two perspectives of organizational models” (Williams & Yang, 1999, p. 387). Stressing a systems perspective, Senge (1990) depicted learning organizations as places “where people continually expand their capacity to create the results they truly desire, where new and expansive patterns of thinking are nurtured, where collective aspiration is set free, and where people are continually learning how to learn together” (p. 1). Senge’s (1990) concept of systems thinking that integrates other disciplines, focusing on a vision for the future rather than on short-term returns, embodies the goals that today’s organizations must pursue. He also argued that companies need team learning and a shared vision. These concepts can be attained only with a shift of mind that departs considerably from the perspective of organizations in the past that relied on fixed, predictable principles. Thus, there seems to be general consensus that being a learning organization is a prerequisite for successful organizational change and performance (Garvin, 1993; Marsick & Watkins, 2003).

Watkins and Marsick’s (1997) framework for the learning organization served as another theoretical base for this study. They identified seven action imperatives for a learning organization: (1) create continuous learning opportunities; (2) promote inquiry and dialogue; (3) encourage collaboration and team learning; (4) establish systems to capture and share learning; (5) empower people to have a collective vision; (6) connect the organization to the environment, and (7) use leaders who model and support learning at the individual, team, and organization levels. Detailed information about this framework is presented in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous learning</td>
<td>“Learning is designed into work so that people can learn on the job; opportunities are provided for ongoing education and growth” (p. 139).</td>
</tr>
<tr>
<td>Inquiry and dialogue</td>
<td>“People gain productive reasoning skills to express their views and the capacity to listen and inquire into the views of others; the culture is changed to support questioning, feedback, and experimentation” (p. 139).</td>
</tr>
<tr>
<td>Team learning</td>
<td>“Work is designed to use groups to access different modes of thinking; groups are expected to learn together and work together; collaboration is valued by the culture and rewarded” (p. 139).</td>
</tr>
<tr>
<td>Embedded system</td>
<td>“Both high- and low-technology systems to share learning are created and integrated with work; access is provided; systems are maintained” (p. 139).</td>
</tr>
<tr>
<td>Empowerment</td>
<td>“People are involved in setting, owning, and implementing a joint vision; responsibility is distributed close to decision making so that people are motivated to learn toward what they are held accountable to do” (p. 139).</td>
</tr>
</tbody>
</table>
System connection
“People are helped to see the effect of their work on the entire enterprises; people scan the environment and use information to adjust work practices; the organization is linked to its communities” (p. 139).

Strategic leadership
“Leaders model, champion, and support learning; leadership uses learning strategically for business results” (p. 139).

Note, Based on Marsick and Watkins (2003).

Core Job Characteristics
Job design has long been considered to be an important contributor to employees’ individual motivation, attitudes, and creative performance at work (Amabile, 1996; Hackman & Oldham, 1975, 1980; Kanter, 1988; Shalley, Zhou, & Oldham, 2004; West & Farr, 1989). Core job characteristics is defined as the perception of the extent that a job is characterized by high levels of autonomy, feedback, significance, identity, and variety (Hackman & Oldham, 1975, 1980; Oldham & Cummings, 1996), which contribute to intrinsic motivation (Amabile, 1988). A meta-analysis of the job design literature concluded that employees working on complex jobs are more satisfied and internally motivated than employees working on jobs that are relatively simple (Fried & Ferris, 1987). When jobs are complex and challenging, individuals are likely to be excited about their work activities and interested in completing these activities in the absence of external constraints (Oldham & Cummings, 1996).

As work becomes more obscure and knowledge based, rather than physical and observable, internal motivation and commitment become increasingly significant in production quality and quantity (Williams & Yang, 1999). This observation is especially true of such knowledge intensive products as innovations and creative performance. When jobs are complex and demanding (i.e., high on challenge, autonomy, and complexity), individuals are more likely to focus all of their attention and efforts on their jobs, making them more persistent and more likely to consider different alternatives, which should result in creative outcomes (Shalley & Gibson, 2004). On the contrary, simpler and more routine jobs may not motivate employees or allow them the flexibility to try new ways of doing things, to take risks, and potentially to perform creatively. As Ford (1995) warned, when organizations assign people to narrow job responsibilities, use reward and promotion based on existing norms and procedures, and direct efforts up and down hierarchies, creative individuals will be out of place.

Relationship between Organizational Learning Culture and Core Job Characteristics
Job design will vary depending on organizational environment, business domain or industry, and job function. In this increasingly competitive environment “in which frequent changes in technologies, markets, government regulations and customers give rise to turbulence and unpredictability” (Unsworth & Parker, 2003, p. 175), organizational learning culture can significantly influence core job characteristics in many ways.

As Drucker (1988) put it, organizations are shifting to information-based organizations, or self-governing units of knowledge specialists. Jobs not only in service and knowledge work, but also in manufacturing are becoming more knowledge-oriented, highlighting the importance of cognitive characteristics of work (Parker, Wall, & CORDERY, 2001). By definition, knowledge work is “unpredictable, multidisciplinary, and non-repetitive tasks with evolving, long-term goals which, due to their inherent ambiguity and complexity, require collaborative effort in order to take advantage of multiple viewpoints” (Janz, Colquitt, & NOE, 1997, pp. 882-883).

Enriched forms of job design are most appropriate where uncertainty is high (Parker et al., 2001), because autonomy has been identified to be salient for knowledge workers. It is likely that an increasingly uncertain environment requires an organizational learning culture and that knowledge workers prefer complex jobs (i.e., broadly defined jobs) to simple and routine work (i.e., narrowly defined jobs) (Parker et al., 2001). In jobs that require high levels of knowledge and creativity, job occupants’ work attitudes (i.e., the perception of job complexity) may vary directly with the level of organizational learning culture. That is, attitudes should be more favorable when environmental characteristics such as organizational learning culture complement the knowledge and creativity requirements of the work (Marsick & Watkins, 2003; Shalley, Gibson, & Blum, 2000).
Methods

An online survey was used to obtain employees’ perceptions of organizational learning culture and core job characteristics. This section describes the population, sample, data collection, instrumentation, and analytical technique.

Population, Sample, and Data Collection

Four Korean companies participated in this study, representing diverse industries: manufacturing, construction, and telecommunications. A convenience sampling approach was used to insure representation within each of the demographic characteristics of importance to this study (i.e., hierarchical level and job type). The HR managers in each company, following the provided guidelines, selected participants who received the e-mail request for participation. A self-administered Internet-based online survey was used to obtain individual perceptions. Of the approximately 600 members contacted through email, responses were received from 264 employees (response rate: 44%). In terms of educational level, 208 employees (79%) graduated from 4 year college, and 56 (21%) from graduate school. While 181 (69%) were manager or assistant manager, 83 represented non-manager group. Classification by job types were as follows: 54 in marketing and sales (21%), 93 in production, engineering, and research and development (35%), 85 in supporting function such as finance, HR, legal and so on (32%), and 32 in others (12%).

Instrumentation

All constructs used multi-item scales that were developed and used in the United States. The instruments were prepared for use in Korea using appropriate translation-back-translation procedures. The survey questionnaire comprised 39 items: the 21-item DLOQ (Yang, Watkins, & Marsick, 2004), the 15-item JDS (Hackman & Oldham, 1980), and three demographic items. A 5-point Likert-type scale ranging from 1 (strongly disagree) to 5 (strongly agree) was used.

Organizational learning culture. To measure the learning organization, this study used Yang et al.’s (2004) shortened version of the DLOQ, originally developed by Watkins and Marsick (1997). The instrument uses 21 items composed of seven dimensions (i.e., continuous learning, dialogue and inquiry, team learning, empowerment, embedded system, system connection, and strategic leadership. Yang et al. (2004) provided evidence of construct validity for the refined version of the DLOQ with 21 items and seven dimensions (i.e., three items for each dimension). After deleting half of the original items, coefficient alphas for the seven dimensions ranged from .68 to .83, and the reliability estimates under CFA ranged from .83 to .93 (Yang et al., 2004). With regard to validity, the results of CFA showed that the seven factor structure fit the data reasonably well (i.e., RMSEA < .08 and CFI > .90) (Ellinger, Ellinger, Yang, & Howton, 2002). Sample items include: “In my organization, whenever people state their view, they also ask what others think” and “In my organization, leaders continuously look for opportunities to learn.”

Core job characteristics. Fifteen items from the Job Diagnostic Survey (JDS) (Hackman & Oldham, 1975, 1980) were used to assess the challenges and complexity of employees’ jobs. The instrument was composed of three items for each of the five job characteristics (skill variety, task identity, task significance, autonomy, and feedback). The median alpha of the job characteristics measures in Oldham and Cummings’ (1996) study was .68. A sample item is, “the job gives me considerable opportunity for independence and freedom in how I do the work.” The aggregate effect of core job characteristics on motivation was measured by the Motivating Potential Score (MPS), a composite item that represents core job characteristics. Hackman and Oldham (1975) suggested that the MPS is calculated by the formula: (Variety + Identity + Significance) / 3 x Autonomy x Feedback. In many studies, researchers have considered the individual job complexity in favor of the MPS as a composite index (see Bhagat & Chassue, 1980; Champoux, 1992; Cunningham & MacGregor, 2000; Fox & Feldman, 1988; Griffin, 1991; Hackman & Oldham, 1975, 1976; Jackson, Paul, & Wall, 1981; Kemp & Cook, 1983; Oldham & Cummings, 1996; Phillips & Freedman, 1984; Saavedra & Kwun, 2000; Schmitt & McCune, 1981; Terborg & Davis, 1982; Tharenou & Harker, 1984; Zaccaro & Stone, 1988).

Analysis Techniques

To test the measurement models, confirmatory factor analysis (CFA) were employed. Then, descriptive statistics and correlation analyses were conducted. Lastly, a hierarchical regression analysis
was performed.

Results

The results of the data analysis processes for each research question are presented in this section. Following the measurement model analyses, descriptive statistics, correlation analyses, and the results of hierarchical regression analysis are described.

Measurement Model Analysis

As organizational learning culture and core job characteristics have second-order structures, separate CFA were conducted. The purpose of assessing model fit is to determine the degree to which the model as a whole is consistent with the empirical data at hand (Diamantopoulos & Siguaw, 2000). Measurement model test was based on the covariance matrix and used maximum likelihood estimation as implemented in LISREL 8.5.

To determine the adequacy of model fit to the data, the chi-square ($\chi^2$) and degrees of freedom (df), the root means square error of approximation (RMSEA), non-normed fit index (NNFI), comparative fit index (CFI), and standardized root mean square residual (SRMR) were examined. As the results of CFA, each measurement model showed an acceptable fit to the data: organizational learning culture ($\chi^2 = 400.19; \text{df} = 168; p = .00; \chi^2/\text{df} = 2.38; \text{RMSEA} = .072; \text{NNFI} = .89; \text{CFI} = .91; \text{SRMR} = .050$) and core job characteristics ($\chi^2 = 204.18; \text{df} = 80; p = .00; \chi^2/\text{df} = 2.55; \text{RMSEA} = .077; \text{NNFI} = .89; \text{CFI} = .92; \text{SRMR} = .058$). According to the criteria (i.e., $\chi^2/\text{df} < 3.0; \text{RMSEA} < .08; \text{GFI, NNFI, CFI} > .90; \text{SRMR} < .08$), both measurement models showed acceptable fit to the data in most indices. With regards to the factor loadings of each measurement model, all factor loadings were significant and most of them were over .50, with an exception (CJC-7: .44). To be more specific, factor loadings for organizational culture ranged from .54 to .77 (median = .62) and those for core job characteristics ranged from .44 to .80 (median = .65). Thus, all loadings in both measurement models were considered adequate.
Table 2  
*Descriptive Statistics, Correlations, and Reliability Coefficients*

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>s.d.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Continuous</td>
<td>3.60</td>
<td>.63</td>
<td>(.64)</td>
<td></td>
</tr>
<tr>
<td>Learning</td>
<td></td>
</tr>
<tr>
<td>2. Dialogue &amp;</td>
<td>3.80</td>
<td>.56</td>
<td>.65</td>
<td>(.69)</td>
<td></td>
</tr>
<tr>
<td>Inquiry</td>
<td></td>
</tr>
<tr>
<td>3. Team Learning</td>
<td>3.75</td>
<td>.57</td>
<td>.62</td>
<td>.73</td>
<td>(.69)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Embedded</td>
<td>3.59</td>
<td>.62</td>
<td>.75</td>
<td>.65</td>
<td>.66</td>
<td>(.67)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
</tr>
<tr>
<td>5. Empowerment</td>
<td>3.70</td>
<td>.55</td>
<td>.65</td>
<td>.69</td>
<td>.70</td>
<td>.67</td>
<td>(.66)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. System</td>
<td>3.91</td>
<td>.54</td>
<td>.56</td>
<td>.67</td>
<td>.70</td>
<td>.61</td>
<td>.72</td>
<td>(.65)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection</td>
<td></td>
</tr>
<tr>
<td>7. Strategic</td>
<td>3.73</td>
<td>.63</td>
<td>.71</td>
<td>.70</td>
<td>.76</td>
<td>.72</td>
<td>.68</td>
<td>.67</td>
<td>(.75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leadership</td>
<td></td>
</tr>
<tr>
<td>10. Significance</td>
<td>4.00</td>
<td>.72</td>
<td>.20</td>
<td>.34</td>
<td>.28</td>
<td>.28</td>
<td>.28</td>
<td>.31</td>
<td>.25</td>
<td>.52</td>
<td>.56</td>
<td>(.79)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Autonomy</td>
<td>3.59</td>
<td>.67</td>
<td>.26</td>
<td>.36</td>
<td>.35</td>
<td>.29</td>
<td>.30</td>
<td>.28</td>
<td>.30</td>
<td>.38</td>
<td>.66</td>
<td>.57</td>
<td>(.56)</td>
<td></td>
</tr>
<tr>
<td>12. Feedback</td>
<td>3.75</td>
<td>.66</td>
<td>.36</td>
<td>.40</td>
<td>.41</td>
<td>.38</td>
<td>.39</td>
<td>.37</td>
<td>.44</td>
<td>.60</td>
<td>.57</td>
<td>.64</td>
<td>(.75)</td>
<td></td>
</tr>
<tr>
<td>13. MPS</td>
<td>54.56</td>
<td>22.78</td>
<td>.30</td>
<td>.40</td>
<td>.38</td>
<td>.37</td>
<td>.36</td>
<td>.37</td>
<td>.34</td>
<td>.59</td>
<td>.76</td>
<td>.72</td>
<td>.87</td>
<td>.86</td>
</tr>
</tbody>
</table>

Note: n = 264; *p < .05, ** < .01; Cronbach’s alphas ( ) are given on the diagonal in parentheses.
Descriptive and Correlation Statistics

Table 2, above, shows means, standard deviations, correlations, and Cronbach’s alphas. All correlation coefficients among the sub-scales of the two constructs were positive and significant (p < .05) except for one (team learning – task variety: .07, n.s.). All correlation coefficients among the sub-constructs of organizational learning culture were significant and strong (r = .56 ~ .75). Previous study also reported that measures associated with the dimensions of organizational learning culture were found to be collinear, concluding that multi-collinearity prohibited a more specific understanding of the relationships (Egan, 2002). However, the measurement model fit in this study was acceptable. Correlations among the sub-constructs of core job characteristics were significant and moderate (r = .38 ~ .66; mean = .61). With regard to the correlations among the sub-constructs of organizational learning culture and core job characteristics, while autonomy and feedback showed modest relationships (r = .26 ~ .41), variety and identity indicated mediocre relationships (r = .07 ~ .28) with the sub-constructs of organizational learning culture.

Cronbach’s alphas for organizational learning culture ranged from .64 to .75 and those for core job characteristics ranged from .56 to .79. Since identity and autonomy showed low reliability coefficients (r = .56), it was reasonable to use the MPS, the composite measure of core job characteristic, as suggested by Hackman and Oldham (1975). Overall, the seven subscales of organizational learning culture and the MPS were significantly and moderately associated with each other, ranging from .30 to .40.

Hierarchical Regression Analysis

Table 3 illustrates the results of hierarchical regression analysis, conducted to test the second research question. Dummy variables were used for the analysis of demographic (control) variables.

In step 1, the demographic variables accounted for 10% of variance in the MPS. Whereas employees in higher hierarchical position had significantly higher MPS (Manager: r = .19; Non-manager: r = -.15), educational level and job type turned out not to be significant. In step 2, the seven dimensions of organizational learning culture showed .20 in R² increase, explaining 30% of variance in the MPS as a whole. Dialogue and inquiry (r = .19) and embedded system (r = .24) turned out to be significant predictors of the MPS. As the results of additional analyses for five sub-constructs of core job characteristics, the extent of variance that organizational learning culture and control variables explained in each sub-construct was as follows: variety (13%), identity (17%), significance (21%), autonomy (24%), and feedback (28%).

In summary, organizational learning culture turned out to be significant predictor of core job characteristics. More specifically, when employees are in the higher hierarchical level and when organization has culture with dialogue and inquiry and embedded system, they are more likely to experience higher job characteristics.

---

**Table 3**

Results of Hierarchical Multiple Regression Analysis

<table>
<thead>
<tr>
<th>Step 1</th>
<th>MPS</th>
<th>Variety</th>
<th>Identity</th>
<th>Significance</th>
<th>Autonomy</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate School</td>
<td>-.00</td>
<td>.14∗</td>
<td>.00</td>
<td>-.05</td>
<td>-.08</td>
<td>.01</td>
</tr>
<tr>
<td>Manager</td>
<td>.19∗</td>
<td>.06</td>
<td>.12</td>
<td>.15∗</td>
<td>.20∗</td>
<td>.16∗</td>
</tr>
<tr>
<td>Non-manager</td>
<td>-.15</td>
<td>-.11</td>
<td>-.15</td>
<td>-.10</td>
<td>-.14</td>
<td>-.08</td>
</tr>
<tr>
<td>Marketing/Sales</td>
<td>.09</td>
<td>-.00</td>
<td>.06</td>
<td>-.03</td>
<td>.06</td>
<td>.10</td>
</tr>
<tr>
<td>Supporting</td>
<td>-.11</td>
<td>-.03</td>
<td>-.08</td>
<td>-.03</td>
<td>-.13</td>
<td>-.11</td>
</tr>
<tr>
<td>Others</td>
<td>-.06</td>
<td>.08</td>
<td>-.03</td>
<td>.04</td>
<td>.02</td>
<td>.03</td>
</tr>
<tr>
<td>R²</td>
<td>.10</td>
<td>.04</td>
<td>.06</td>
<td>.04</td>
<td>.10</td>
<td>.06</td>
</tr>
<tr>
<td>F-value</td>
<td>4.54∗</td>
<td>1.81</td>
<td>2.86∗</td>
<td>1.86</td>
<td>4.74∗</td>
<td>2.95∗</td>
</tr>
</tbody>
</table>

**Step 2**

| Control Variables | MPS    | Variety | Identity | Significance | Autonomy | Feedback |
|                  | -.00   | .17∗    | .01      | -.04         | -.06     | .02      |
Manager | .19** | .07 | .12* | .16** | .20** | .17
Non-manager | -.15 | -.13 | -.14 | -.11 | -.15** | -.08
Marketing/Sales | .09 | -.02 | .03 | -.06 | .05 | .09
Supporting | -.11 | -.03 | -.10 | -.05 | -.10 | -.09
Others | -.06 | .08 | -.03 | .05 | .03 | .03

**DLOQ Dimensions**

| Continuous Learning | -.11 | -.02 | -.07 | -.17 | -.09 | .00
| Dialogue and Inquiry | .19 | .19 | .05 | .23 | .21 | .09
| Team Learning | .08 | -.35** | .06 | -.04 | .17 | .12
| Embedded System | .24 | .16 | .17 | .18 | .13 | .22
| Empowerment | -.00 | -.03 | .12 | .04 | .00 | -.01
| System Connection | .13 | .12 | .16 | .27 | -.00 | .15
| Strategic Leadership | .04 | .17 | -.15 | -.10 | -.02 | -.05

| R² Change | .20 | .09 | .11 | .17 | .14 | .22
| F Change | 10.12** | 3.76** | 4.55** | 7.66* | 6.76** | 10.79**
| Cumulative R² | .30 | .13 | .17 | .21 | .24 | .28

Note: n = 264; *p < .05, **p < .01

**Discussion**

Respondents in this study were highly educated knowledge workers in capital and knowledge intensive industries. In terms of organizational structure, these firms have been flattening over the last decade, using teams in many functions. The changing organizational structure may affect the role of job characteristics. It is likely that the increased use of self-managed teams and knowledge workers needs more autonomy and discretion.

This study found that an organization with a better learning culture produces employees who perceive higher job complexity or job characteristics. In other words, when employees perceive that there is a positive organizational learning culture, they are more likely to experience core job characteristics (i.e., skill variety, job identity, job significance, autonomy, and feedback). While playing a pivotal role in intrinsic motivation, job satisfaction, and performance, core job characteristics are contingent on organizational learning culture. That is, without such a culture that supports learning in organization, the efforts invested in job design would be meaningless. Thus, organizations have an incentive to create environments conducive to high perception on job characteristics by encouraging organizational learning culture.

Implications for the practice and research of HRD are discussed below, followed by limitations and recommendations for future research.

**Implications for HRD Practice**

This study has implications for research and practice in HRD. In terms of research, no previous research that has examined the relationship between organizational learning culture and perceived job complexity was found. This study examined learning organizational culture as an antecedent of core job characteristics, which, in turn, affects various outcomes, including proximal outcomes (e.g., intrinsic motivation and job satisfaction), and distal outcomes (e.g., individual and organizational performance. Thus, the contribution of this study lies in that it integrates organizational learning research and job design research.

HRD professionals can support managers by providing relevant practices and services. Organizational learning culture can significantly influence job characteristics in many ways by enhancing dialogue and inquiry and embedded systems. The development of an organizational culture that is open and trusting, that allows people to express their views and to listen and inquire into the views of others, and that supports questioning, feedback, and experimentation, is vital for promoting employee’s perception of job complexity. Without such a culture, the efforts invested in job design are sub-optimized. Knowledge management systems and social events, as well as effective communication of vision, values, and goals, can also help to facilitate an organizational learning culture at the organizational level. Managers can create an organizational culture that promotes systems thinking over fragmentation, collaboration and cooperation over competition, and proactivity and creativity (Kreitner & Kinicki, 2001). Thus, most effective way for HRD professionals to assist an organization that strives to become a
learning organization is to make managers adopt new roles as a coach and a learning facilitator (McLean, 2006).

Limitations and Recommendations for Future Research

This study has several limitations. First, this study relied on self-reported and reflective recollections of the indicators of the constructs in this study by employees who volunteered their participation. Because of the perceptual nature of the data, there is the possibility of a percept-percept bias and a single source bias. Second, this empirical study confined itself to a cross-sectional survey method that leaves room for speculation with regard to causality among the variables. Finally, the respondents were mostly highly educated male employees.

To solve the limitations above, methodologically, future research needs to be based on objective indicators and multiple sources. There should be more longitudinal studies with comparison groups, so that causality can be fully established. To increase generalizability of the present study, more studies in various industries representing diverse demographic cohorts are needed. In addition, more studies are needed in both western and non-western firms. Such research would also help to identify commonalities and differences across cultures.

Research on the role of core job characteristics for intrinsic motivation, role ambiguity and so forth is also recommended. More specifically, future studies are needed to determine whether job characteristics serve as mediator or moderator role in the relationship of organizational learning culture and performance. Finally, additional outcome variables of core job characteristics (e.g., creative performance and proactive behaviors) need to be examined in the future.

Conclusions

As mentioned earlier, the contribution of this study lies in its linkages of organizational learning research with job design research. The purpose of this paper was to investigate the relationship between learning organizational culture and core job characteristics in a non-western (Korean) cultural setting, controlling for educational level, hierarchical position, and type of job. Organizational learning culture turned out to be a moderate antecedent of core job characteristics. That is, an organization with better learning culture makes employees perceive higher in job characteristics.

HRD can play a pivotal role in enhancing job characteristics by individual and organizational learning and development. The role of HRD is to provide learning and development in two different dimensions: individual and organizational (Joo & McLean, 2006). In addition to training basic skills, HRD practitioners and researchers need to pay more attention to organizational learning culture as an important antecedent of core job characteristics, which, in turn, affects various outcomes, including intrinsic motivation, job satisfaction, and individual and organizational performance.

References


redesign as applied to Hackman and Oldham’s job characteristics model. Organizational Behavior and Human Performance, 29, 112-128.


